Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 42(4): 738-744, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38238112

RESUMO

In the quest for heightened protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, we engineered a prototype vaccine utilizing the plant expression system of Nicotiana benthamiana, to produce a recombinant SARS-CoV-2 virus-like particle (VLP) vaccine presenting the S-protein from the Beta (B.1.351) variant of concern (VOC). This innovative vaccine, formulated with either a squalene oil-in-water emulsion or a synthetic CpG oligodeoxynucleotide adjuvant, demonstrated efficacy in a golden Syrian Hamster challenge model. The Beta VLP vaccine induced a robust humoral immune response, with serum exhibiting neutralization not only against SARS-CoV-2 Beta but also cross-neutralizing Delta and Omicron pseudoviruses. Protective efficacy was demonstrated, evidenced by reduced viral RNA copies and mitigated weight loss and lung damage compared to controls. This compelling data instills confidence in the creation of a versatile platform for the local manufacturing of potential pan-sarbecovirus vaccines, against evolving viral threats.


Assuntos
COVID-19 , Animais , Cricetinae , Humanos , COVID-19/prevenção & controle , Mesocricetus , SARS-CoV-2 , Vacinas contra COVID-19/genética , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
Poult Sci ; 102(10): 102953, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542940

RESUMO

Infectious bronchitis (IB) Gammacoronavirus causes a highly contagious respiratory disease in chickens that is listed by the World Organisation for Animal Health (WOAH). Its high mutation ability has resulted in numerous variants against which the commercially available live or recombinant vaccines singly offer limited protection. Agrobacterium-mediated transient expression in Nicotiana benthamiana (tobacco) plants was used here to produce a virus-like particle (VLP) vaccine expressing a modified full-length IBV spike (S) protein of a QX-like IB variant. In a challenge study with the homologous live IB QX-like virus, VLP-vaccinated birds produced S protein-specific antibodies comparable to those produced by live-vaccinated birds seroconverting with mean geometric titers of 6.8 and 7.2 log2, respectively. The VLP-vaccinated birds had reduced oropharyngeal and cloacal viral shedding compared to an unvaccinated challenged control and were more protected against tracheal ciliostasis than the live-vaccinated birds. While the results appeared similar, plant-produced IB VLPs are safer, more affordable, easier to produce and update to antigenically match any emerging IB variant, making them a more suitable alternative to IBV control than live-attenuated vaccines.


Assuntos
Bronquite , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Galinhas , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Organismos Livres de Patógenos Específicos , Bronquite/veterinária , Vacinas Atenuadas
3.
PLoS One ; 18(7): e0288970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471377

RESUMO

Infectious bronchitis (IB) is a highly contagious, acute respiratory disease in chickens, with a severe economic impact on poultry production globally. The rapid emergence of regional variants of this Gammacoronavirus warrants new vaccine approaches that are more humane and rapid to produce than the current embryonated chicken egg-based method used for IB variant vaccine propagation (chemically-inactivated whole viruses). The production of virus-like particles (VLPs) expressing the Spike (S) glycoprotein, the major antigen which induces neutralizing antibodies, has not been achieved in planta up until now. In this study, using the Agrobacterium-mediated Nicotiana benthamiana (tobacco plant) transient expression system, the highest levels of VLPs displaying a modified S protein of a QX-like IB variant were obtained when the native transmembrane (TM) domain and cytoplasmic tail were substituted with that of the Newcastle disease virus (NDV) fusion glycoprotein, co-infiltrated with the NDV Matrix protein. In comparison, the native IB modified S co-infiltrated with IB virus membrane, envelope and nucleocapsid proteins, or substituted with the TM and CT of an H6-subtype influenza A virus hemagglutinin glycoprotein yielded lower VLP expression levels. Strong immunogenicity was confirmed in specific pathogen free chickens immunized intramuscularly with VLPs adjuvanted with Emulsigen®-P, where birds that received doses of 5 µg or 20 µg (S protein content) seroconverted after two weeks with mean hemaggluttination inhibition titres of 9.1 and 10 log2, respectively. Plant-produced IB VLP variant vaccines are safer, more rapid and cost effective to produce than VLPs produced in insect cell expression systems or the traditional egg-produced inactivated whole virus oil emulsion vaccines currently in use, with great potential for improved IB disease control in future.


Assuntos
Bronquite , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Vírus da Bronquite Infecciosa/genética , /metabolismo , Aves Domésticas , Galinhas , Proteínas Virais de Fusão , Vírus da Doença de Newcastle , Anticorpos Antivirais/metabolismo
4.
Vaccine ; 41(13): 2261-2269, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36868876

RESUMO

The outbreak of the SARS-CoV-2 global pandemic heightened the pace of vaccine development with various vaccines being approved for human use in a span of 24 months. The SARS-CoV-2 trimeric spike (S) surface glycoprotein, which mediates viral entry by binding to ACE2, is a key target for vaccines and therapeutic antibodies. Plant biopharming is recognized for its scalability, speed, versatility, and low production costs and is an increasingly promising molecular pharming vaccine platform for human health. We developed Nicotiana benthamiana-produced SARS-CoV-2 virus-like particle (VLP) vaccine candidates displaying the S-protein of the Beta (B.1.351) variant of concern (VOC), which triggered cross-reactive neutralising antibodies against Delta (B.1.617.2) and Omicron (B.1.1.529) VOCs. In this study, immunogenicity of the VLPs (5 µg per dose) adjuvanted with three independent adjuvants i.e. oil-in-water based adjuvants SEPIVAC SWETM (Seppic, France) and "AS IS" (Afrigen, South Africa) as well as a slow-release synthetic oligodeoxynucleotide (ODN) adjuvant designated NADA (Disease Control Africa, South Africa) were evaluated in New Zealand white rabbits and resulted in robust neutralising antibody responses after booster vaccination, ranging from 1:5341 to as high as 1:18204. Serum neutralising antibodies elicited by the Beta variant VLP vaccine also showed cross-neutralisation against the Delta and Omicron variants with neutralising titres ranging from 1:1702 and 1:971, respectively. Collectively, these data provide support for the development of a plant-produced VLP based candidate vaccine against SARS-CoV-2 based on circulating variants of concern.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Coelhos , Animais , Humanos , SARS-CoV-2 , Agricultura Molecular , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Anticorpos Neutralizantes , África do Sul , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética , Imunogenicidade da Vacina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...